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SUMMARY 

Studies have shown the need for  refrigeration systems to  provide low 

This is particularly t rue  fo r  adverse temperatures  in manned spacecraft. 

orientation of the vehicle with respect t o  the sun for portions of long t e r m  

missions. 

and could be operated with waste heat as opposed to  electrical  o r  shaft power 

requirements of the vapor compression cycles. 

practical requirements of the absorption cycle and the effects of varying 

operating parameters .  

tion cycle with the vapor compression cycle as previous studies had shown 

similar potential performance. However, definitive performance data for a 

spacecraft absorption cycle in zero-g was not available. 

The absorption cycle potentially provides the needed refrigeration, 

This study evaluated the 

No  attempt was made to  compare relatively the absorp- 

The l i terature  was searched to determine the best fluids for a flight-type 
absorption refr igerator .  Fluids were  selected on the basis of minimum system 

weight, minimum radiator a r ea ,  low power consumption, and safety and opera- 
tional requirements.  Safety requirements alone limited the selection to a ,small 

number of fluids. Numerous fluid properties were  compared with detailed graphs.  

The requirement of a large latent heat of vaporization for the refrigerant and a 

low freezing point narrowed the selection to refrigerants 21, 22, 11, 12, 114 

and 216. 

The requirements of a high absorbent boiling point and a la rge  absorption 

capability for the-absorbent fluid narrowed the absorbent selection to dimethyl 

ether of tetraethylene glycol (DME-TEG). 

have a large negative deviation f rom Raoult's law in the absorbent narrows 

the refrigerant to R-21 and R-22, 
R-22 and DME-TEG were  seen to be desirable. 

properties,  the best  fluid combination was found to be R-22 and DME-TEG. 

The requirement that the refrigerant 

F o r  several  other fluid properties,  R-21, 

F r o m  consideration of all 

... 
111 
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Equations were developed which relate pressure,  temperature and 

concentration for a solution of refrigerant and absorbent for R - 2 1  and R-22 

i n  DME-TEG, 

of pressure  and temperature. 
ated with mixture of each refrigerant in DME-TEG were also developed. 

Enthalpy equations were developed for  each fluid as a function 

Equations defining the heat of mixing associ-  

__ ~ -_ - 

Refrigeration cycle equations were developed for an idealized absorption 

refrigeration system with a subcooler and recuperator. 

was described along with each inherent assumption. 

were considered in the analysis with the exception of an  assumed efficiency 

of 80 percent for the overall performance of the absorber and the generator. 

The total system 
No system inefficiencies 

Component weight equations were derived for system radiator com- 

ponents (condenser and absorber),  heat exchanges components (recuperator 

and subcooler) and the system pump. 

an  assumed radiator weight-density and incident heat. 
based on correlations of existing flight exchangers. 

The radiator weights were based on 

Heat exchangers were  

Cycle inefficiencies were calculated to provide a measure of the validity 

of assumptions made in the cycle analysis. P re s su re  drops, temperature 

differentials, mass t ransfer  resistances and expansion losses  were examined. 

The results indicated that the system lines,etc., can be sized so that the 

assumptions made are  reasonably valid. 

Cycle, fluid and component weight equations were compiled into a 

computer program for analyzing the refrigeration cycle. 

of the program were developed, one nonautomated, one automated on weight 

minimization and the last automated on radiator area minimization. Programs 
for  R-21 and R - 2 2  were prepared, which were used to conduct parametric 

analyses for the absorption refr igerator .  

viding a minimum radiator a r e a  was R-22 with a generator temperature of 

450°F. 

Three versions 

Results revealed that the case pro- 

The penalty for a lower temperature was substantial. 

iV 
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The effects of varying each parameter that was assumed to be a t  a 

fixed value were investigated. 

the others were held constant. 

Each parameter was varied individually while 

F r o m  the parametric analyses a test  design condition was selected. 

Safety and stability requirements resulted in the selection of R-22 and DME-TEG 

with a radiator temperature of 250 F. 

conditions including temperatures, flow rates 

concentrations a t  every point in the cycle. 

as well 

0 The program identified all design 

enthalpies, p ressures  and 

Weights and a r e a s  were defined 

test  system was developed which i s  based on the tes t  design conditions 

selected, F i r s t ,  the absorber component was designed, fabricatied and tested 

individually to verify its performance at design conditions. 

performed well a t  equilibrium design conditions e 

i s  presented which includes steps for cleaning the system prior to being tested. 

A motion picture, showing the view port a t  the absorber exit during operation, 

was prepared and is  available. 

The absorber 

A detailed tes t  procedure 

Next, the generator, separator and recuperator components were de- 

signed, fabricated and installed with the absorber for closed loop testing of 

the total absorbent flow loop. 
with a cooler.) The total system was scaled to 1/53 of the total 35 kW system. 

Detailed analyses used in determining the component designs a r e  presented, 

as well a s  detailed tes t  procedures. 

(The condenser and evaporator were simulated 

~ _. 

Each component in the total generator-absorber test system operated a s  

designed, Manual control of the total tes t  system, as dictated by the limited 

funds available for the study, resulted in instability during total system test. 
As a result ,  operation was limited to  only several  minutes for each test. 

Detailed tes t  results a r e  presented. 

A pump-turbine motor  study was conducted. Results indicate that a 
positive displacement hy raulic motor should be used for pressure reduction 

in the weak solution line and a throttle valve in the refrigerant line. 

V 
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Detailed conclusions and recommendations are presented. The general 

conclusion of the study was that the zero-gravity absorption refrigeration 

system is feasible for use as an environmental control refrigerating system 

in space vehicles, Supporting conclusions a r e  detailed. The pr imary recom- 

mendation is that investigations into the zero-g absorption refrigeration system 

should be continued. Specific recommendations a r e  presented. 

vi 
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NOMENCLATURE 
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f 
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0 
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q 
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R 
T 
U 

C 
v 

a r e a  

speed of sound 
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tube diameter 

heat of mixing 

heat of reaction 

friction factor 

function in Eq. (13)  
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fugacity of substance i in  pure state 

acceleration of gravity 

enthalpy 

high pressure (in condenser) 

an  equilibrium constant in  Eq. 13 
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mass flow ra te  
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ix 
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W 
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X 
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c 

rl 

P 

PC 

(r 
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temperature difference between fluid and wall 
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a absorbent 
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cond condenser 

e evaporator 

eq equilibrium 

g generator 
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Q liquid 

Bo low value 
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Pump Pump 
r refrigerant 

rec  recuperator 

sub sub cool e r 
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Section 1 

INTRODUCTION 

The advantages of using a refrigeration system in orbital vehicles t o  
provide low temperatures a r e  well known. Basically, refrigeration enables a 

substantial reduction in the size of radiators required to dump waste ECS 

heat. 

compression refrigerator that it can operate on thermal energy rather  than 

shaft energy a s  required by the latter, This thermal energy is often avail- 

able a t  no expense in space vehicles since high temperature waste heat f rom 

thermal power sources is dumped overboard. 

The absorption refrigerator has the advantage over the standard vapor 

Absorption refrigeration is now used extensively for earth-bound r e -  

frigeration and a i r  conditioning systems. In such systems, the absorption, 

desorption and liguid/gas separation processes rely heavily on gravity. 

Furthermore,  commercial  systems do not always make full use of the poten- 

tial available in the cycle. Use of such a system in orbital applications r e -  

quires that the components which normally depend on gravity be operable in 

both 1 g and neutral o r  greatly reduced gravity. 

requires the development of capabilities which do not currently exist. 

ous concepts for neutral g operation of the various components of an absorp- 

tion refrigeration have been proposed. However, with the exception of tes t s  

conducted on a zero gravity operable wick-type liquid/vapor separator,  none 

The accomplishment of this 

Numer- 

of the concepts proposed have been fabricated and tested. 

the natural progression of developing flight hardware i s  the design, fabrica- 

tion and testing of a ground refrigeration system which is designed for opera- 

tion in neutral gravity conditions. 

toward accomplishing that goal. 

The next step in 

This document presents Lockheed's work 
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Section 2 

NT-ABSORBENT FLUID PROPERTY DATA 

2, l  FLUID LITERATURE SURVEY 

Fluids to be used in refrigeration and cooling units for manned space 

flight applications must  fulfill a number of requirements. For example, the 

safety requirements a r e  quite important. 

port properties of the fluids considered should be such as to yield a low r e -  

f r igerator  weight and low power consumption for the required performance. 

In addition, certain operational requirements must  be satisfied. Since no 

single fluid exists that meets  all the necessary requirements, establishing 

certain c r i te r ia  will aid in selecting the fluids that a r e  best  suited for  the 

application to absorption cooling systems. 

The thermodynamic and t rans  - 

For  reasons of c rew safety, the fluids should be: 

1, Nontoxic, 

2. Nonflammable, and present no explosion hazard when 
they a r e  in contact with air or oxygen. 

F r o m  the thermodynamic point of view the following properties a r e  most  
desirable: 

3 .  The refr igerant  should have a high latent heat of vapori- 
zation a t  the evaporator temperature.  
quantity of refr igerant  to be circulated.) 

4. Refrigerant and absorbent should display a strong mutual 
affinity indicated by a strong negative deviation from 
Raoult's law. (This allows a la rge  difference in concen- 
tration between generator and absorber ,  and reduces the 
amount of absorbent to be circulated. This has an impor- 
tant consequence. The l e s s  absorbent used, the smaller  
the amount of heat input required in the generator,  and a 
minimum heat input is generally desired,)  

(This will minimize 

2- 1. 
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5. The absorbent should have a relatively low vapor pressure 
as compared to the refrigerant. (This will permit a clean 
separation of refrigerant and absorbent in the generator.) 

Finally, f rom the operational point of view, the following requirements should 

be satisfied. 

6.  All fluids should be chemically stable and maintain the 
liquid state within the range of operational temperatures. 

7. All fluids and their decomposition products, i f  any, mus t  
be non-corrosive toward the materials used in the system. 

8. The fluids should have a low viscosity in ord.er to minimize 
pressure losses  and maximize heat transfer in  the system. 

9. Pressures ,  in general, should not deviate extremely from 
the ambient pressure in order  to prevent bleeding and to 
enhance light-weight construction. 

The final choice of the appropriate refrigerant-absorbent combination from 

among those which best  sat isfy the requirements outlined above depends on 

the resulting weight of the refrigeration system for a given se t  of conditions. 

As a rule,  this selection is a compromise between conflicting desirable 

properties . 

2.1.1 Fluids Comparison 

The safety requirements outlined above considerably limit the search 

Table 1 presents a survey of inorganic and halogenated for suitable fluids. 

organic refrigerants with respect to flammability, explosion hazard, and 
toxicity. The hydrocarbons were deliberately excluded because, although 

relatively nontoxic, they are highly flammable, and all of them present ex- 

plosion hazards when they are combined with air or  oxygen. 

a r e  deficient in any of the cr i ter ia  applied should thus not be considered. 

For  the same reasons,  the lower alcohols, ethers,  and amines should be 

disregarded. Table 1 shows that, i f  safety is the overriding criterion, further 

analysis can be restricted toCO N 0, SF and H 0 among the inorganic sub- 

stances, and refrigerants 11, 12, 13, 13B1, 14, 22, 23, 114, 115, 216, and 

Fluids which 

29 2 6 2 

2-2  

C%KHEE%) - HUNTSVSLLE RESEARCH 8 ENGINEERING C F N Y E R  



LMSC-HREC D162909 

C318 among the halocarbon components. Necessarily, this survey is  

limited to fluids for which dktailed data a r e  available on their thermo- 

dynamic and transport  properties (Refs. 1, 2 and 3) .  

The latent heats of vaporization of various refrigerants a r e  compared 

in F igs .  1 and 2. 
dioxide with those of some typical refrigerants , while vaporization heats of 

most  of the halocarbon refrigerants a r e  shown on a la rger  scale in Fig.  2. 

Figure P displays those of water,  ammonia and carbon 

It becomes immediately clear  that water is the best  refrigerant f rom 

this aspect. 

makes it unsuitable for low temperature cooling. 

best but i t  mus t  be discarded for reasons of safety. Assuming an  evaporator 

temperature between -40 and 40°F, Fig. 2 shows clearly that, among the in- 

organic substances, carbon dioxide and nitrous oxide deserve consideration. 

Among the halocarbons, refrigerants 21, 22, 11, 12, 114, and 216 show the 

la rges t  heat of vaporization; R-21 has the highest, and R-216 the lowest. 

Unfortunately, however, its relatively high melting temperature 

Ammonia would be next 

Figure 3 shows the solubility character is t ics  of the best  four organic 

compounds, viz,, refr igerants  21, 22, 11, and 12, in  a mixture with dimethyl 

ether of tetraethylene glycol (DME-TEG). 

the desired negative deviation from Raoult 's law while R-11 and R-12 (Refs. 

4 and 5) display a positive deviation, very strong for R-12 and l e s s  for R-11. 

Hydrogen bonding or  lack of hydrogen bonding is considered to be a significant 

factor in explaining the solubility characterist ics noted in these solutions 

(Ref. 4). 

Only R-21 and R-22 (Ref. 4) show 

Absorbents other than DME-TEG were investigated by Thieme and 
Albright (Ref. 6) .  
N, N-diethyl formamide a r e  good solvents for refrigerants 21 and 22, in 

particular as compared to DME-TEG on a weight basis,  

they perform well, based on solubility considerations, both have relatively 

It was reported that both, N,  N-dimethyl formamide and 

However, although 

2 -3  
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low boiling points, which might cause problems in an  absorption cooling 

system. 
compared in  Fig .  4, which also shows vapor pressures  for water and other 

"Ansul-Ethers" (Ref. 7). 

is particularly noteworthy. 

point between DME-TEG and R-22. 

and water a r e  compared in Fig. 5. 
refrigerants with respect  to their heats of evaporation and their vapor pres -  

sures .  

heats of evaporation, but they also have very high vapor pressures .  Their 
use would therefore necessitate using relatively heavy equipment. This is 

in contrast  to water,  which is  distinguished by a large heat of vaporization 

and very low vapor pressures ,  as seen from F i g s .  1 and 5. 

Vapor pressures  of DME-TEG and refrigerants 21 and 22 a r e  

The desirable low vapor pressure of DME-TEG 

Note also the large difference in the boiling 

Vapor pressures  of other refrigerants 

It is interesting to compare some of the 

Carbon dioxide and nitrous oxide, for example, have relatively large 

The remaining graphs i l lustrate the fluid properties that affect the 

operational aspect of absorption refrigeration systems. 

decomposition data for refrigerant 22 at typical generator temperatures 

when it is in contact with various mater ia ls  (Ref. 8; when the data indicated 

decomposition values of l e s s  than 0.00ly0, they were  plotted at 0.001'$0). F r o m  

these data it appears  that, at leas t  for R-22, chemical stability should be of 

no concern. However, a cautionary r emark  is in order .  Not only is it un- 

certain how far these da ta  apply to the refrigerant plus absorbent system, 

but i t  should also be noted that aluminum is generally the leas t  reactive metal  

only because it is protected by an oxide film (Ref. 9). The data for R-22 and 

oil were taken from Spauschus and Doderer (Ref. l o ) ,  and refer to a tes t  

duration of 28 days only. 

erants 12, 114, and 115. Decomposition of refr igerant  C-318, for examplep 

is l e s s  than 0.00ly0 under all circumstances,  and m o r e  precise data could 

not be found. 
presence of metal ,  the order  of increasing stability is as follows: R-114 = 

R-12 R-22 < R-115 (Refs. 8 and 9). When a naphthenic oil is included, the 

order  is in general the same, according to Parmelee (Ref. 8). As a general 
rule it can also be said that the simpler,  chemically, a system can be made, 

the longer its life should be. 

Figure 6 displays 

Figure 7 depicts more  analogous data for refr ig-  

In general  it can be said that, in the absence of oil but in the 

2-4 
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Another property which is important from the operational point of view 

is the viscosity. 

absorbents in the liquid state as compared to water. 

l eas t  in the lower temperature range, all the refrigerants a r e  l e s s  viscous 

than water. 

Note also that among the refrigerants, R-22, has one of the lowest viscosities, 

placing it ahead of other refrigerants for operational reasons. 

Fig. 8 shows the viscosities of various refrigerants and 

It can be seen that, a t  

DME-TEG appears to be somewhat more  viscous than water. 

The viscosities of various fluids in the vapor state a r e  shown in Fig .  9. 
While the viscosity of liquids decreases  with increasing temperature, the 

opposite trend is observed for the vapor state. 

vapors a r e  not only about an order of magnitude smaller than those of the 
liquids, but their spread is quite a bit l ess .  

Also, the viscosities of the 

2.1.2 Conclusions and Recommendations 

A large number of fluids for which detailed data could be found in the 

l i terature have been surveyed a s  to their suitability for absorption refrigera- 

tion systems to be used in manned space flight. 

safety, thermodynamic properties and operational cr i ter ia .  It appears that, 

among the refrigerants,  R-22 is one of the best suited, if not the best overall. 

It has a relatively.high latent heat of vaporization, i t s  vapor pressure is rela-  

tively moderate,  i t  is nonflammable, nontoxic and nonexplosive, its chemical 

stability is very good, and i ts  viscosity in the liquid state is very low com- 

pared to other refrigerants.  Furthermore,  and most  important, i t  displays 

excellent solubility with DME-TEG. This conclusion, arrived a t  by a more  

or less  qualitative comparison of the various fluid characterist ics is sup- 

ported by Eiseman (Ref. 12). 

DME-TEG was found to be the best for R-22 (Refs. 6 and 4). 

Emphasis was placed on 

ong the absorbents which were discussed, 

With regard to other fluid systems, for which no detailed data could be 

found, the trends shown in the figures present some recommendations. Both 

refrigerants 114 and 216 have a relatively large latent heat of vaporization 

at a relatively low vapor pressure,  Their solubility characterist ics in 

2-5  
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DME-TEG a r e  therefore of definite interest .  The same argument holds for 

water, which i s  reported to be miscible with DME-TEG (Ref. 7), although i t  

might present problems because of i t s  relatively high freezing temperature. 

2.2 FLUID THERMODYNAMIC PROPERTIES DEVELOPMENT 

When the various requirements for chemicals to be used in absorption 

refrigeration systems a r e  considered, especially f rom the standpoint of per- 

formance of such systems, the solubility characterist ics of the refrigerant 

fluid in the solvent fluid a r e  of primary importance (Ref. 4). 

desirable that the refrigerant-absorbent mixture exhibit a large negative de- 

viation from Raoult's law, meaning that the amount of refrigerant absorbed is  * 
larger  than that predicted for ideal solutions, Therefore, for a given refrig- 

erant flow ra te ,  the absorbent flow rate  is smaller ,  necessitating l e s s  heating 

in the generator and less  heat rejection in the absorber.  The heat of mixing 

which generally accompanies high solubility, and its qualitative and quantita- 
tive effect on the heat balance i s  discussed in Section 2.3.  

It is particularly 

Although the theory of thermodynamics (Refs. 13 and 14) provides the 

framework, the evaluation of actual functional relationships between pressure,  

temperature and composition must  largely rely on experimental data. How- 

ever,  the analytical description of the solubility characterist ics is important 

for extending or extrapolating experimental data which ar e normally available 

only for a limited set  of conditions. 

The thermodynamic property used to characterize deviations of solu- 

tions from the ideal behavior (Raoult's law) is the activity coefficient defined 

a s  

where f. and 

respectively; 
4. 

f .  

f .  x. 

1 - ai - - 0 

1 1  

fo a r e  the fugacity of the solute i in solution and the pure solute, 

x. i s  the mole fraction of the substance i in solution. For  
1 

1 

* 
A verification of this is presented on page 6-2. 

2-6 
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conditions under which the perfect gas law holds, the fugacity may be 

regarded a s  the partial pressure,  thus 
pi 

Pi xi 
- -  

0 
ai - 

0 
1 

Here p. is the vapor pressure of the pure solute i. 

activity coefficients should satisfy the Gibbs-Duhem equation, which, for a 

binary system, reduces to 

It can be shown that the 

where the subscripts indicate the variables to be considered constant. 

Analytical solutions to the Gibbs-Duhem equation a r e  known under the 

names of VanLaar, Margules, and Scatchard-Hamer, among others. The 

Margules equations, being relatively easy to evaluate, represent a truncated 

ser ies  solution to the Gibbs-Duhem equation, and can be written as 

logal = Ax 3 + Bx2 3 
2 

loga2 = Ax1 3 + B’x2 2 (4) 

For a binary system x2 = 1 - xl, and we can write 

(5) 
logal = A(1 - x ~ ) ~  + B ( 1  - xl) 2 

Here A and E3 a r e  constants under the assumptions stated previously (per- 

fect gas law; constant temperature). 

regarded as functions of temperature. Conditions under which the behavior 

of the vapors depart  appreciably from those of perfect gases impose further 

limitations on the validity of Eqs. (3)  through ( 5 ) ,  For cases  in which the 

change of activity coefficient with temperature is unknown or too difficult 

to evaluate, Colburn and Schoenborn (Ref. 15) stated that some organic 

In general, however, they must  be 
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systems follow the approximate rule 

T logal = const. 

for constant composition. 

The present investigation, making use of the above suggestion, shows 

that the temperature dependence of A and B in Eq. (5) can be evaluated, in  

an approximate fashion, by fitting a plot of 

T logal 
= f ( l  - xl) 

(1 - X l )  

(7) 

Figures 10 and 11 show such plots for two fluid systems. 

pared by using experimental data for systems of refrigerants 22 and 21 and 

dimethyl ether of tetraethylene glycol (DME-TEG), as given by Mas trangelo 

(Ref. 16). It can be seen that, except for the highest temperatures,  the data 

points follow approximately straight lines e 

ing expressions: 

They were pre- 

Curve fitting resul ts  in the follow- 

R - 2 2  and DME-TEG: 

2 4720 (1 - x ) ~  - 4970 (1 - x) 
T p(x, T )  = xexp  

R-E1 and DME-TEG: 
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The preceding equations agree with those given by Blutt and Sadek (Ref. 17). 
The vapor pressure t e r m  on the right hand sides of these equations is 

easily evaluated by fitting a curve to a plot of Bn p 

perature (see Figs. 12 and 13) ,  resulting in the following expressions: 

0 versus reciprocal tem- 

R-22: 

In po = 12.531 - 3.676 0 l o 3 +  - 0.187 0 lo6  
(T)2 

R-21:  

For  the cycle analysis one is actually more  interested in computing the com- 

position as a function of given pressure and temperature. 

it was assumed that x can be represented as a linear function of the logarithm 

of the pressure p, with temperature T as parameter.  The following relations 
were obtained: 

For  this purpose 

R-22 and DME-TEG: 

x(p, T) = a(T) t 0.54 logp 

-4 T2 a (T)  = 3.0 - 0.828 e IOe2 T + 0.0413 e 10 

R-21 and DME-TEG: 

x(p, T) = b(T) -t 0.53 logp 

b(T) = 5.905 - 1.59 T -t 0.0978 T 
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A comparison of Eqs. (8) and ( l o ) ,  together with experimental d a t a  is presented 

in F i g s .  14 and 15. It can be seen that Eqs. (10a)and (10c)adequately represent  
the experimentaldata. These equations were used in regions lying outside the 

range of experimental data. 

In addition to the p - T - x relations discussed above, a cycle analysis 

requires expressions for the enthalpies of the liquids and vapors involved. 

Curve fitting data f rom tables and charts  (Ref. 3), the following expressions 

were derived for the enthalpies of saturated liquids (see Figs.  16 and 17): 

R-22: 

h(T) = 0.198 (T  - 420) + 18.3 (T-420)2  - 14.7 e 10 -6 (T-420)3  

R-21: 

( T  - 420)3 -6 h(T) = 0.1814 (T-420)  4- 9.76 0 (T-420)2  - 4.72 0 10 

4- 0.805 e (T - ~ 1 2 0 ) ~  - ( I l b )  

Expressions for  the enthalpies of saturated and superheated vapor can a l so  

be obtained by curve fitting pressure-enthalpy charts.  

following expxes sions : 
This resul ts  in the 

R-22: 

-2.67 
h(P ,T)  = 0.1542 (T-420)  t 1 0 1 ~ 5  - 0,p .( 

R-21: 

- 1,64 
k(p, T) = 0.147 (T  - 420) 4- 114.6 - 0.1 p(&) 
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These equations a r e  reasonably accurate for moderate pressures .  

not apply for pressures  higher than the cr i t ical  pressures .  

They do 

Figures  16 and 17 a l so  show saturated liquid enthalpies which resul t  

when constant heat capacities a r e  assumed, and these a r e  the enthalpies 

actually used in the cycle analysis. 

when it was found that certain optimum temperatures,  subcritical for the 

mixture,  a r e  in the supercrit ical  range for the refrigerant (i.e., the cr i t ical  

temperature of the mixture is  higher than that of the pure refrigerant) .  Since, 

at supercrit ical  temperatures ,  the concept of saturated liquid becomes mean- 

ingless, just a.s the heat of vaporization, it was assumed that the enthalpy of 

the liquid refrigerant in the mixture at its temperature could be calculated 

by  assuming a constant heat capacity. 

approach was then taken throughout the cycle analysis. A method by Hildebrand 

and Scott of extrapolating the heat of vaporization above the cri t ical  point was 

examined; however, the C 

considered just as valid. 

The need for this simplification a rose  

For  reasons of consistency, this 

extrapolation was m o r e  straightforward and was 
P 

2.3 HEAT OF MIXING OF R-21 AND R-22 IN DME-TEG 

In contrast  to the behavior of ideal gases ,  i t  is  well known that in the 
adiabatic mixing of.two or more  liquids of the same temperature,  usually 

either a temperature increase or decrease occurs.  

be clearly followed through the introduction of the concept of "heat of mixing.'' 

These phenomena can 

It is observed that in particular those fluid combinations which exhibit 

a strong mutual affinity, documented by high solubility and large negative 

deviations from Raoult's law, a lso have la rge  heats of mixing. There does 

not seem to be any method available to determine this heat of mixing purely 

by analytical means.  The lack of 

adequate data considerably hinders the search for an  application of new 
absorbent-refrigerant combinations. Mastrangelo (Refs. 16 and 18) gives 

equations and solubility data f rom experiments which, when combined can 

be used to calculate the heats of mixing for selected organic refr igerants  in 

a mixture with DME-TEG, 

Instead experimental data must  be used. 
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where 

Accordingly, the heat of mixing, AHm, can be calculated from 

Here AHm is the heat of mixing per mole solution, AH 

R is the universal  g a s  constant, f a function depending on the refrigerant,  and 

K is an equilibrium constant. The te rms  x and x a r e  the mole fractions 

is a heat of reaction, r 

r S 
of the refrigerant and the solvent, respectively, in the solution, 

Three equations a r e  given by Mastrangelo (Ref. 18) to determine the 

equilibrium constant K in te rms  of additional constants K1 and K2: 

1 - 
K1 - f ( 1 t K )  

f t l  - - -  2 K 1  - K - 1  
KZ - " f ( l + K )  - f 

Using these equations, K can be expressed in t e rms  of K1 = K1(T) for which 

values a r e  given as a function of temperature: 

1 f + l  
= - - - l - K 1  K1 

The bracketed term in Eq. (14) can then be evaluated for various refrigerants 

by plotting PnK versus l / T  (TOK) (see Fig .  18). 

to represent  an adequate fit to the data. 

pendent of temperature.  

Straight lines were assumed 

This essentially makes AHr inde- 

After AHr is known, the heat of mixing is obtained 
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from Eq. (13) by successive approximations until z remains constant. 

to six i terations were found to be usually sufficient to realize a constant value 

for Z e  

Five 

Typical resul ts  a r e  shown in Fig. 19 for refrigerant 21 and DME-TEG. 

Results of present calculations a r e  compared with those of Mastrangelo, and 

a l so  with experimental resul ts  of Zellhoefer and Copley (Ref. 19). 

ment i s  considered satisfactory. 

mately 1150 calories of heat a r e  liberated when one-half mole of each, R-21 

and DME-TEG, a r e  mixed to give one mole of solution. 

this corresponds roughly to 40% of the heat of vaporization of the refrigerant 

at typical absorber  temperatures. In the cycle analysis, however, concen- 

tration alternates between the absorber value and the generator value such 

that the total change in AHm is that between two intermediate values of con- 

centration. 

heat of mixing on the overall  heat balance of the cycle may in fact be small;  
however, depending on the two concentrations i t  can approach 40%. 

The agree-  

F r o m  F i g .  19 i t  can be seen that approxi- 

On a mole basis,  

Thus, it is concluded that in certain cases  the influence of the 

The heat-of-mixing equations were incorporated in the cycle analyses 

discussed in Sections 3 to 5. The actual effect of heat of mixing, as revealed 

by the computer analysis,  was an approximate 10 to 15% increase in  generator 

and absorber weights and the absorber a rea .  
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Section 3 

ABSORPTION REFRIGERATION CYCLE ANALYSIS 

Analysis of the theoretical performance of an absorption refrigeration 

system is ideally suited t o  digital computer solution. 

which represent the theoretical performance. 

for convenience into the following groups: 

Equations can be defined 

These equations a r e  categorized 

Fluid property 
Cycle (mass  and heat balance) 

Component weight 

Cycle inefficiencies. 

The fluid property equations a r e  discussed in Section 2 along with the fluid 

l i terature search. The other th ree  a r e  presented in the following subsections. 

3. I REFRIGERATOR CYCLE EQUATIONS 

3.1.1 Discussion 

The zero-g absorption refrigerator i s  shown schematically in Fig. 20. 
The system consists of two fluid loops. 

12) can be termed the refrigerant loop. 

on a refrigerant pressure-enthalpy chart in F ig .  21. The condenser, subcooler, 

turbine (or throttle), and evaporator portion of the refrigerant loop is identical 

to that of a vapor compression cycle. 

and the absorption systems is in the method of getting the low pressure r e -  

frigerant vapor back to a high pressure vapor to  enter the condenser. 

the vapor compression cycle, the vapor i s  compressed, requiring consider- 
able mechanical energy. 

The outer loop (1 ,2 ,3 ,9 ,4 ,5 ,  10,6,8 
The pure refrigerant portion is shown 

The difference in the vapor compression 

In 

In the absorption system the vapor i s  absorbed 
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into a liquid absorbent, compressed in liquid form and then desorbed at  the 

high pressure to enter the condenser as  a high pressure vapor. 

pressing a liquid, far l e s s  mechanical energy is required. 

By com- 

The inner loop (3 ,9 ,4 ,5 ,  11,7,13) is  the absorbent loop. The absorbent 

is a liquid which absorbs varying amounts of the refrigerant depending on 

the pressure andtemperature  of the solution. 

and temperature a r e  such that refrigerant vapor is evolved from the solution. 

Therefore, since the refrigerant vapor is taken out at the separator, a weak 

solution exists through 11, 7, 13. The weak solution, throttled o r  expanded to  

a new pressure and temperature, absorbs the refrigerant returning from the 

subcooler. 

In the generator the pressure 

The pump provides the pressure increase for the rich solution 

leg (3, 9 ,4 ,  5). 

Turbines can be considered for pressure reduction devices instead of 

throttle valves. 

pump, and the enthalpy level of the refrigerant entering the absorber is reduced. 

The gain is twofold: the turbine energy i s  used to power the 

The recuperator and subcooler a r e  used to increase the overall system 

efficiency. 

Heat added in the generator provides the heat of vaporization (and heat 

of mixing) to  evolve the vapor. 

the heat of vaporization (and mixing) to absorb the vapor in the liquid. 

Heat rejected from the absorber removes 

3.1 .2  Equations Development 

The equations which describe the cycle performance are presented in 

the following paragraphs. 

in this a r e a  (Ref. 17). 

Maximum utilization was made of previous work 

The refrigeration capacity, q is assumed known. It i s  assumed there e’ 
i s  no absorbent in the refrigeration loop. The expansion processor are 
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assumed isenthalpic. 

the fluid at the evaporator. 

is: 

It i s  assumed that only heat of vaporization is added to  

Therefore, the liquid flow rate into the evaporator 

a - l e  
- h  v; 1 1;l 1 , e  - h  m 

Some refrigerant enters the evaporator a s  saturated vapor. 

the subcooling i s  not sufficient to  prevent some vaporization in the refrigerant 

turbine. The refore, 

This is because 

where 

obtained from a heat balance on the subcooler. 

to locations shown in Fig .  20. 

The numeric subscripts refer  

Equilibrium concentrations of the solution in the absorber and the 

generator, XAE and XAG, respectively, a r e  obtained by fluid property equa- 

tions presented in Section 2. The refrigerant concentrations at the absorber 

and generator exits a r e  derived from the two efficiency equations: 

X - x  abs 
- x  r l =  

g Xabs g,eq 

The basis for these efficiency equations is presented in Section 3.3,3. 
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The resulting concentrations 

- - 
abs x 

are: 

‘1 abs xa, e q  r l x  + 
g g , e q  ’ -‘labs 

+ ‘ lgxg ,  e% 
‘labs Xabs, eq 1 - y~, 

I2 

+L 
‘abs l - q g  

The refrigerant flow rate  in the weak solution and the total absorbent 

flow rate a r e  now derivable f rom quantities already defined. 

- m - 
r, 11 x - x  

a g  

The energy exchange in  the recuperator is evaluated in the weak 

solution leg: 

The enthalpy at point 4 is now obtainable: 
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The heat loads at the absorber, condenser subcooler, and generator 

a r e  now determined: 

The enthalpy at point 4 is now obtainable: 

'rec 

a m h = h  . +  
a, r as 3 

The heat loads at the absorber, condenser subcooler, and generator 

a r e  now determined: 

- 
+ 'mix, 3 'mix, 7 

qcond = m 1  (hr,!3 - h6) 

qsub 

-rin h r, 4 r, 4 h r,lP r, 1, 5 = m  h + m  qgen 1 T s V ,  5 

The pump power requirement is calculated as follows: 
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where the coefficient is the conversion from flow energy to heat energy. 

These cycle equations a re  used in the computer program presented in 

Section 3.4.  

3 .2  COMPONENT WEIGHT AND RADLATOR AREA EQUATIONS 

In the design of an absorption refrigeration system it is desirable to  

minimize two system parameters:  the total system weight, and the total 

radiator area.  

since the radiators constitute the bulk of the total weight. 

large demands a r e  made of other system components, their  weights can r i se  

rapidly. F o r  example, as the absorbent flow rate r i ses ,  the recuperator 

and generator weights increase. 

ments a r e  placed upon the subcooler and the recuperator their  weights 

increase accordingly. 

weight in the parametric evaluations. 

These two parameters a r e  almost proportional to each other 

However, when 

Also, when increased efficiency require- 

Therefore, it is desirable to t rea t  both a rea  and 

A radiator a r e a  requirement is easily obtained, a simple and definite 

function of the radiator temperature,  the required net heat flux from the 

radiator and the incident heat to the radiator. 

Weight is f a r  l e s s  well defined. The weight density of a radiator is 

variable. 

heat rate and component efficiency and these dependencies a re  not clearly 

defined, 

radiator area. 

Furthermore,  the weights of other components depend on flow rate, 

Therefore, the safest approach is to simply optimize the total  

The radiator a rea  equations a r e  s b p l y :  

- qab s 
4 

- 
Aabs '' Tabs - ' in 

- - 'cond 
cond 4 -  

A 

cr' Tcond 4 in 
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However, in order to  deal at all with total system weights, equations 

The must be defined that relate the component weights to  performance. 

weight of the two radiator components (absorber and condenser) a r e  assumed 

to be: 

W - - (WD) *cond 
2 cond 

The t e rms  WD and q.. will be varied in the parametric analysis s o  

that the influence of each parameter is identified. 

The equation for the pump assembly was determined by plotting weight 

versus hydraulic horsepower for  several  pump modules that a r e  currently 

being used for space application. 

The resulting equation for the pump assembly weight was given by: 

An equation was then written for  this curve. 

w = 0.546 
P-P 

where 

I 

Pa P r  

This pump assembly weight equation agrees quite well with other pump weight 

equations given in  various reports when the weight of the driving motor and 

required gears  a r e  added to  the pump weight. 

An extensive l i terature survey was conducted to obtain a reasonable 

weight equation for heat exchangers (recuperator, subcooler) as  a function 
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of their  performance, 

The equation obtained that relates performance to  heat exchanger weight is 

The best information found w a s  from Shaffer (Ref. 20) 

0.882 = 1.475 pc Vc 
Hx W 9 

where pc is the core density and V is the core volume. 

i s  calculated by 

The core volume 
C 

2 3  where K = (A/Vc) - f t  /f t  and is called the surface a rea  density and AT in 
our case is the log mean temperature difference (LMTD) for the heat 

exchanger 

The values of core density and core surface area density as given by 
Shaffer for various type heat exchangers are:  

Type of Surfarc Applications 

ressure gas to 
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Since Shaffer is a staff member  of &research  Manufacturing Company who 

provides compact heat exchangers for space applications, it was felt that his 

equation and data for heat exchangers were probably the best available and 

were therefore used in this study. 

3 . 3  CYCLE INEFFICIENCY EQUATIONS 

The computer program as  currently in operation assumes an idealized 

cycle performance, i.e., with no inefficiencies. (The only exception is that 
a quantitative inefficiency can be assumed and input f o r  the mixing and sep- 

aration process in the absorber and generator, respectively. However, no 

experimental o r  analytical data a r e  used to justify the assumed values.) A 

number of inefficiencies warrant consideration. These a r e  the: 

1. 

2. 

3. 

4. 

P r e s s u r e  drop in flow lines 

Driving temperature potential required in each heat 
t ransfer  device 
Mass t ransfer  resistance associated with absorbing 
and desorbing the refrigerant in the absorbent 

Inefficiency in the expansion throttle valves. 

There is no question that these factors degrade the system perform- 

ance. 

ical  description of the components of the refrigerator. 

factors may be such that they a r e  insignificant regardless of the component 

configuration. Others may be appreciable. 

The question is the extent. Quantitative definition depends on a phys- 

Some degradation 

These five inefficiencies a r e  discussed in the following sections: 

3.3.1 Pressu re  Drop Losses 

Calculations were  performed t o  determine the pressure loss  at each 

section in the refrigeration cycle, 

were those selected a s  design values in the parametric analyses of Section 4. 

The flow conditions used in the calculations 
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These flow conditions a r e  presented in Table 2. The results of these cal- 

culations for numbered points in the cycle (Fig. 20 and for  the condenser 
and the absorber a r e  presented in Figs. 22 and 23.  

shown for each flow position as a function of the flow line diameter. 
results reveal that the flow channels can be sized do that pressure losses  

a r e  reduced to insignificant values. 

The pressure gradient is 

These 

..- - 

3,3,2 Driving Temperature Required to Each Heat Transfer Device 

A finite temperature difference exists between the condensing fluid 

in the condenser tubes and the radiating surface of the condenser. 

ignored in the computer solution, is inherent in the absorber,  evaporator 

and generator as well. This means, in the condenser for example, if the 

refrigerant condensation i s  taken to occur at some temperature, Tcond (value 

used in the computer analysis), the radiating surface of the condenser will 

be at Tcond 
computer solution if i t  were known. 

on the exact design,of the condenser which is not presently known. 

fore, in order  not to introduce an unknown into the computer solution, the 

AT in the several components is treated as zero. 

computer solution i t  is adequate to be aware of the assumption being made 

and to have a feel’for the range of values that can exist for AT, and the 

effect on each component. 

This AT, 

- AT. This inefficiency o r  loss  could easily be treated in the 

However, its actual value is dependent 
There- 

For  the purpose of the 

In the generator, AT i s  not critical since the heat source temperature 

can be higher than the fluid temperature in the generator without a penalty. 
In the condenser and the absorber AT i s  important because i t  results in a 
direct penalty (reduction) in the radiator temperature. The absorber AT 

is assumed to behave quite similar to the condenser AT since in both a 
vapor is being converted to a liquid. 

because i t  causes a direct penalty in the refrigerating temperature.’ That is, 
i f  the refrigerant evaporation is taken to occur at T 

The evaporator AT is important also 

e 
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analysis), the evaporator tube walls will be at T t AT and the fluid being 

refrigerated (air, for environmental control) will be at T 

F o r  these reasons, calculations were conducted to define these temperature 

differentials for the condenser and the evaporator. 
cients and AT versus tube diameter for the condenser and the evaporator a r e  

presented in Figs. 24 and 25, respectively. Clearly, the tubes can be sized 
to minimize the temperature differential inefficiency. 

e 
t AT t AT'. e 

Curves of film coeffi- 

3.3.3 Mass Transfer  Resistance in Absorber and Generator 
- - - - - . - __ -. - . . - - _  _ _  

In the absorber and the generator, one fluid, the refrigerant, is being 

absorbed o r  desorbed, respectively, by a second fluid, the absorbent, There- 

fore, mass transport of one liquid within the other becomes a potential rate 

constraint, 

9n the surface of the absorbent solution which is weak in refrigerant. Unless 
this newly absorbed refrigerant is somehow removed from the surface of the 

solution, the solution at that point will become saturated with refrigerant and 

absorption will cease, 

It is important to understand what happens when this saturation occurs. 

the absorber temperature remains constant following this saturation, absorp- 

tion ceases., However, this is not expected to be the case, Heat is being 

removed f rom the absorber due to the release of heat of vaporization and 

heat of mixing, 

by the external conditions (ioeos radiation f rom the tubes via fins for a space 

radiator) it is not likely to stop when absorption stops. 

continues and instead of being balanced by vaporization the fluid temperature 

drops. 

prevented only by adequate mass transfer, 
the generator is a temperature r ise  caused by heat addition with desorption,) 

For  example in the absorber,  the refrigerant gas  is "condensing" 

( Jus t  the opposite process applies for the generator,) 

If 

Since this heat removal f rom the solution is being maintained 

This heat removal 

This temperature drop is undesirable in the absorber and can be 
(The corresponding effect in 

Removal of the newly absorbed refrigerant f rom the solution surface 

is accomplished by mass diffusion or  by physical mixing as caused by 

turbulence. In order to examine this potential problem, a model must be 
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assumed. 
physical constraints. 

The liquid solution is assumed to be a film on the tube wall surrounding a 
refrigerant vapor core.  

The model for  the absorber is essentially prescribed by the 
A finned tube condensing radiator must be assumed. 

- -  - - .  _____ ~ ~ __ -______  

Calculations reveal that the liquid film is turbulent. A careful l i t e ra -  

ture  search did not produce a solution to the problem of mass t ransfer  of 

a single component vapor into a turbulent binary liquid film. 

attempt to t rea t  the problem as laminar with pure diffusion was unsuccess- 

ful as no diffusion coefficient data was available fo r  R-22 in DME-TEG. With 

these obstacles to a direct  solution to the mass t ransfer  problem, an intuitive 

approach was taken. 
heat t ransfer  in the absorber was made. 

and mass t ransfer  a r e  quite analogous in the absorber. 

be t ransferred f rom the vapor core into the liquid film. 

ous. However, going a step fur ther  the analogy fails, The heat must now 

pass  through the liquid film, into the tube wall, through the fin and then 

radiate to space, 

liquid is passed f rom the film surface into the film. 

difference is substantial. 

adjacent to the tube wall to get to the tube, 

more resis tant  to transport  than the turbulent portion of the film, not to 

mention the remaining resistances in  the heat flow path. It becomes quite 

c lear  that with turbulent flow the heat t ransfer  would be expected to be the 

controlling mechanism, 

analysis was done. 

quate to maintain fresh,  non-equilibrium liquid at the film surface.) The 

heat t ransfer  analysis of the absorber  is considered to be similar to that 

of the condenser which is  treated in Section 3 - 3 2 .  

Even an  

A direct comparison between the mass t ransfer  and the 
Upon first examination, the heat 

Heat and mass must 

This par t  is analog- 

The mass t ransfer  stops when the absorbed vapor, now a 

In turbulent flow this 

Heat must pass  through a laminar liquid sublayer 

Obviously, this sublayer is far 

(This fact had been anticipated before the transport  

The turbulence of the liquid film was thought to be ade- 

The next step was to evaluate this intuitive analysis experimentally. 

This was performed and is documented in Section 6 of this report ,  

discussed there,  the absorber  performed as designed. 

As 
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The preceeding analysis related to the ability of the weak solution to 

absorb the refrigent vapor by turbulence. 

ever, only when the solution is 

refrigerant, A s  absorption proceeds down the tube and the solution approaches 

equilibrium, the absorption rate is retarded by the reduced driving differential. 

A point is reached where, even with the turbulence discussed previously, 

the absorbtion rate reduction results in a temperature decrease of the radia- 

tor. 

This absorption can occur, how- 

o r  below its equilibrium value in 

To prevent this, it will be assumed that the solution will exit the ab- 

sorbe r at some concentration below equilibrium. 

absorber will, therefore, be defined as: 

A similar equation for  the generator is presented 

The efficiency of the 

in Section 3.1. F o r  the 

purposes of this study the absorber and generator efficiencies will be set at 

8 0 7 0 ~  The effect of varying this percentage is presented in Section 4. 

3,3.4 Expansion Losses  

The enthalpy r i se  in the strong solution pump and the enthalpy drop in 

the weak solution and refrigerant expanders are each l e s s  than 1 Btu/lb 

which is negligible in the total system. 
rn 

Losses  in the expanders can therefore be ignored, The important 

aspects of the expanders a r e  their potential to: (1) establish a pressure  

differential (throttle valve) between Phi and Plo; (2)  meter  the flow (positive 

displacement hydrolic meter) through the refrigerant and/or weak solutions 

lines; and (3 )  provide power to reduce the electrical  power requirement of the 

pump. These a r e  discussed at length in Section 8 which deals with the 
pump - turbine -motor package 
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3.4 COMPUTER PROGRAM DEVELOPMENT AND AUTOMATION 

Eguations derived and selected to define the performance of a zero-g 

absorption refrigeration system were presented in Sections 3.1 and 3.2. 

Assumptions regarding line and component pressure losses  and temperature 
differentials between fluids and components were justified in Section 3.3. 

The equations were developed into a digital computer program which 

Three solves the entire absorption cycle based on the assumptions made. 

versions of the program were developed. 

quires that the following six temperatures be prescribed and input: evaporator, 

The f i r s t  version (Version 1 )  re-  

Te; generator, T - subcooler, Tsub; recuperator,  Trec; absorber ,  Tabs; and g' 
This program simply calculates, for these fixed tempera- Tcond' condenser, 

tures,  the system pressures ,  enthalpies, flow rates, heat loads, component 

weights, radiation a reas ,  refrigerant concentrations, etc e 9  around the s y s  tem. 

The basic program described above was modified into two automated 

These two versions a r e  programmed to automatically minimize versions. 

the total refrigerator system weight (Version 2) or total system radiator 

area (Version 3), respectively. 

temp ra tures ,  the program automatically calculates the remaining component 

temperatures which correspond to minimum weight o r  a rea .  Since the opti- 

mized temperatures are interdependent, the optimum value of one will vary 

when the other temperatures are changed. Therefore, a convergence cri- 

terion is  a key to the optimization scheme. 

sions of each were set up with R-21 and R - 2 2  equations. 

By inputting only the generator and evaporator 

Weight and area optimized ve r -  

For  all versions of the program, the following assumptions a r e  made. 

Most of these assumptions follow directly from Sections 3.1 to 3,3: 

1, P res su re  changes in the flow line occur only at the pump and 
the throttle valves (see Fig .  20  and Table 21, 
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2, Temperature changes occur in the absorber,  recuperator, 
generator condenser and subcooler. N o  changes occur in 
flow lines e 

3.  The expansion and compression processes a r e  isenthalpic. 

4. The radiator a r ea  calculations (for absorber and condenser) 
assume the entire radiator surface is a t  the component exit 
temperature. This is conservative since the a rea  would be 
smaller than calculated. 

5, A value of incident heat flux to the radiators must be assumed. 

6 .  A value of radiator weight density (weight per unit a rea)  must  
be assumed, 

7. An overall efficiency for the absorber and the generator must 
be assumed. 

8. Complete separation occurs in the separator.  

9. N o  absorbent enters the condenser. 

10. The efficiency of the heat exchangers (T - T for the recuperator 7 9  
and T8 - T 

while they a r e  optimized for Version 2 (weight optimized case).  

for the subcooler) a r e  input to Version 1 and Version 3 1 

11. Radiator emissivity = 0.9. 

The a r e a  optimized version with R-22 equations is presented in 
Appendix A. 

Section 4 ,  

Parametr ic  results of the program runs a r e  presented in 

3 - 1 5  
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Section 4 
PARANETRIC CYCLE ANALYSIS 

The cycle optimization computer program discussed in Section 3 was 

used to define the best  refrigeration cycle design based on the idealized 

conditions assumed. 

optional parameters  to a r r i v e  a t  the following nominal case: 

A nominal value was selected for each of the several  

2 qin: 50 Btu/hr-ft on each side of the radiator 

WD: 2 l b  m /f t2  

qe: 35 kW 
= 77 = 0.8 qabs g 

T = 40°F 
i e 

Optimization cases  were  run for two fluids (R-21 andR-22 with DME-TEG), 

two different optimization routines (system weight and radiator area mini- 

mization) and seven different generator temperatures (200 to 500OF). 

composite of all these calculations is shown in Fig. 26. 

that for the assumptions made, the optimum generator temperature for R-22 
is approximately 450 F for a minimum total radiator a r e a  and approximately 

415OF for a minimum total system weight, Fo r  R-21 the same two tempera- 

tures  a r e  approximately 330 F and approximately 285 F,  respectively. 

Furthermore,  it shows that for a r e a  optimization, R-22 is superior above 
265OF while R-21 is  superior below that temperature.  

R-22 is superior above 340OFwhile R-21 is below that temperature. 
best  combination for minimum a r e a  is R-22 a t  T 

of going to a lower temperature is substantial. 

A 
The figure reveals 

0 

0 0 

F o r  weight optimization, 

The overall 
= 450°F. The penalty 

gen 

Note that the weights corresponding to optimized a r e a s  and the a r e a s  

corresponding to optimized weights a r e  a lso presented on Fig.  26. 
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The total system weight used in the optimization is the combined weight 

of the absorber,  pump, recuperator,  condenser, subcooler and the liquid in 

the recuperator and the subcooler. 

parameters a r e  being optimized a s  follows: 

In the weight optimized run four separate 

T3 (T cond 1 

T6 (Tabs) 

T7 - T9 

Tg - T2 

(dependent on recuperator efficiency) 

(dependent on subcooler efficiency) 

Weight optimization of T7 - T9 and T6 - T 
and subcooler weights go up rapidly a s  these temperature differences approach 
zero. A minimum exists a t  some point. Radiator a r ea  does not have such a 

minimum for these two temperature differences. Therefore, a r ea  optimization 
cannot be done on T 
do the weight optimization first and then use the efficiencies therefrom as fixed 

values in the a rea  optimization. Therefore, the a rea  optimization is done on only 

is possible since the recuperator 2 

- T 
7 9  and T6 - T2 e The solution to this problem was to 

T and T6. 3 

Absorber and condenser temperatures which correspond to-optimum 

conditions for  each optimization case conducted a r e  shown in F i g .  27 f o r  R-22  

and Fig .  28 for R-21. 

Version 1, the non-automatic version of the program was used to ob- 

serve the effects of varying the absorber and condenser temperatures f rom 

their optimum values for the a r e a  optimization, R-2 case.  The results a r e  

shown in Fig. 29. 
i t  shows the penaltyfor off design. 

Thisverifies that the optimization program is correct  and 

All the preceding calculations were for a fixed value of radiator weight 

density, incident radiator heat flux and generator and absorber efficiencies. 

Furthermore,  the a r e a  optimization cases  were for fixed subcooler and r e -  

cuperator efficiencies (based on corresponding results f rom weight optimi- 

zation). 
therefore arbi t rary,  i t  was considered desirable to show the independent 

Since these selections were based on anticipated conditions and were 
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influence of each one. 
The results a r e  shown in Figs.  30 through 34.  

system weight a r e  shown as a function of each of these parameters. 

point on each curve is an a r e a  optimized value. 

parameter is used when another is being varied. 

erator  temperature was assumed to be 250 for  one reason - that was the 

value chosen in Section 5 for  testing. 

the total system weight and/or a r e a  except T 

the subcooler weight; however,the subcooler weight is such a small portion 

of the total system weight that it does not show up appreciably. 

This was done using the area optimization program. 
The optimized area and the total 

Each 

The nominal value of each 

The nominal value of gen- 
0 

Each parameter  is seen to influence 

- Tzm T6 - TZ does influence 

A cycle analysis for  R-22/DME-TEG was conducted using a zero  de- 

viation f rom Raoult's law. 

by computer analysis, the stated need for a large deviation from Raoult's 

law, 

Raoult's law was used in the program in  place of the experimental data avail- 
able on R-22  in DME-TEG. Also, since heat of mixing is due to adeviationfrom 

Raoult's law, heat of mixing was eliminated in the fictitious run. The resul ts  

of this comparison are: At a generator temperature of 250°F, the new case 

resulted in an increase in total radiator a r ea  of f rom 2541 f t  to 2798 f t  

(10.1oJo) and an increase in  total system weight of f rom 3605 lbm to 4213 lbm 

(16.9oJo). 

This fictitious situation was run simply to  verify, 

The case was exactly the same as a standard R-22/DME-TEG except 

2 2 

These results verify the need for a large deviation f rom Raoult 's law. 



LMSC-HREC D16 

Section 5 

CYCLE DESIGN 

Results f rom the parametric cycle analyses were used to define design 

conditions for the experimental phases of the study. 

on using area optimization resul ts  ra ther  than weight optimization. 
choice was made in  consultation with Mr. R .  L. Middleton, the NASA Contract- 

ing Officer's Representative (COR). 

that the weight equations used in the program a r e  more  susceptible to e r r o r  

The selection was based 

This 

The choice is substantiated by the fact 

than the radiator a r e a s  equations and a r e  therefore a more reliable criterion. 

Actually, most of the system weight is attributed to the radiators for which 

weight is proportional to area.  

have only approximately defined weight equations. 

The non-radiator components a r e  those which 

The design condition selected was the minimum a r e a  case of Fig. 26 
which corresponded to R-22 with a generator temperature of 450°F. 
ever,  there  is some question about the stability of a solution of R-22 and 

DME-TEG above 350°F. 

safety at  the extremely high pressure (452.5 psia) associated with a 450° 
generator temperature.  

the generator temperature was set  a t  250 F. 
the high pressure was 248 psia. 

How- 

Furthermore,  there was some concern about 

Therefore, in  mutual agreement with Mr. Middleton, 
0 At this generator temperature 

It is noteworthy that at T = 250°F, R-21 is superior to R-22. How- 
tz 

ever ,  R-22 was retained because i t  is anticipated that a flight system would 

be operated a t  300 to 350°F such that R-22 would again be superior. It is 
interesting that the total system weight for R-22 (from Fig. 1) is better a t  

300 - 350°F than a t  450°F anyway. 

The exact flow conditions a t  each point in the cycle for R - 2  

T = 250°F is shown in Table 2 .  The numbered locations c o r r  

to those on Fig. 2 0 .  
g 
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Section 6 
ABSORBER TEST SYSTEM 

A preliminary tes t  system to evaluate the absorber component has been 

designed, fabricated and assembled. 

made of stainless steel. The absorber radiator a r e a  for TG = 250°F is taken 

to be 608 f t  
26.5 f t  and a 6-inch tube separation, a total of 53 tubes will be used. 

present tes t ,  the flow ra t e s  a r e  scaled down to 1/53rd and the cooling length 

of the absorber tube is 23 f t .  

All surfaces wetted by the fluids a r e  

2 on one side. Assuming a rectangular configuration of 23 f t  by 

In the 

6.1 EXPERIMENTAL ARRANGEMENT AND APPARATUS 

A detailed flow diagram of the test system is shown in Fig.  35. (Draw- 

The weak solution is drawn f rom the mix tank where the com- ing No.A40]I). 
ponents have been mixed to yield the given concentration of R-22.. 
has been preheated and pressurized. 

to achieve the scaled down flow rate.  

tainers passes  through the immersion heaters  before entering the mixing 

section. Cooling water is admitted to the absorber outer jacket. A view 

section was installed after the absorber  for visual inspection of the exit flow. 

The inlet and the exit sections of the absorber a r e  shown in Figs. 36 and 37, 
respectively. 

The tank 

The weak solution supply line is adjusted 

The R-22 vapor f rom the preheated con- 

1 pressure  vessels  were tested to sa t i s fy  the "Safety and Industrial 

Hygiene Standards" (C-12) of Lockheed Missiles & Space Company. 

For  purpose of sizing the tes t  system, tes t s  were conducted to deter-  

mine the temperature-dependent specific gravity of DME-TEG ( 

The details of the t e s t s  a r e  given in ppendix B and the absorber design in 

ppendix C. 

5-1  
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6.2 TEST PROCEDURES 

detailed test  procedure has been written for the absorber tes t  which 

includes a discussion of pre-test  cleaning steps,  safety measures  and actual 

tes t  procedures. An abbreviated version is given in  

The absorber tes t  is completed when clear liquid (complete absorption) 

is observed at the view section while the fluids a r e  maintained at the specific 

conditions at the absorber inlet. 

6.3 TEST RESULTS 

The absorber tes t  was completed successfully with weak solution and 

R-22 vapor introduced into the absorber at design conditions. 

tion was obtained at the exit with no vapor present. A rerun of the tes t  was 

made under similar conditions, and motion pictures were taken to  show the 

tes t  apparatus and the flow patterns at the exit of the absorber.  

sults and the scenario for the motion picture a r e  given in Tables 3 and 4. 

A strong solu- 

The tes t  r e -  
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Section 7 
ABSORBER AND GENERATOR TEST SYSTEM 

7.1 TEST LOOP AND COMPONENTS 

A schematic view of the tes t  loop for evaluating the absorber and gen- 
erator components i s  shown in  F ig .  38 (Drawing No.A402). The loop includes 

the flow lines,  the absorber,  the generator, the recuperator, the pump, the 

separator and the cooler (which represents the condenser and the evaporator 

for a complete absorption refrigerator).  

stainless steel  tubing with 0.035-inch wall. 

the recuperator, generator, separator and the cooler a r e  given in  Appendixes 

E to H. The assembling of various components and the insulated test  loop a r e  

shown in Figs.  39a to 39h. 

The transfer lines a r e  0.95-inch 0.d. 

The details of the final design of 

The design requirements given in Table 2 scaled to 1/53rd scale were 

those used as test  design conditions, 

7.2 TEST PROCEDURES 

The tes t  loop is filled with solution of specified R-22 refrigerant con- 

centration from the liquid surge and feed tank. 

erated in the generator or  admitted to the system directly into the absorber.  

The strong solution from the absorber passes through a pump where the pres- 

sure  is raised from 84 psia to 248 psia. The temperatureof the strong solution 

is then increased through a recuperator before being heated in the generator. 

The weak solution from the separator passes through the recuperator and 

back to the absorber.  

cooler before being throttled down to the abso ber inlet. 

actual test  procedure is given in 

R-22 vapor is either gen- 

The R-22 vapor f rom the separator is cooled in a 

An outline of the 
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7,3 TEST RESULTS 

Testing on the closed loop generator-absorber test  system verified 

each system component. 

the absorber, generator, recuperator, separator and cooler. Results indi- 

cate that the design of each independent component was more  than adequate; 

however, manual control of the total system, as dictated by the limited funds 

available for the study, resulted in  instability during to ta l  system test. F o r  

example, a fixed pump speed dictated a bypass valve for flow control. This 
recycling of the same fluid through the pump caused the fluid to become ex- 

cessively warm which ultimately led to off-design conditions at best  and pump 

cavitation at worst. These and other instabilities precluded prolonged opera- 

tion at design conditions. 

Each individual component operated satisfactorily - 

Results regarding each of the components taken individually a r e  a s  

follows: 

Absorber: Complete absorption occurred in the absorber.  

Generator: Good vapor generation occurred in this component. 

Separator: The separator provided good vapor/gas separation. 

Recuperator: The high demand requirement of the recuperator 
was met. 

The actual test conditions during the system tests  were those presented 
s mentioned previously these conditions were sustained only for in Table 5. 

several  minutes. 

Recommended design changes a r e  presented in Section 9. 
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Section 8 

PUMP-TURBINE-MOTOR PACK 

A study was conducted to a s s e s s  the use of turbines in place of throttle 

valves in an absorption refrigeration system designed to be used in  an orbit- 

ing space station. There a r e  two throttle valves in a typical absorption r e -  

frigerating system which a r e  used to drop the pressure  in the weak solution 

line and the refrigerant line. 

valves represents  energy loss to. the system, the question of energy recovery 

by the use of turbines or  by other means immediately suggests itself when 

the refrigeration system is considered for space use. 

As the drop in pressure through the throttle 

An assessment  of the pump-turbine-motor package development require- 

ment was conducted and i t  was concluded that a pump-turbine-motor package 

is not the most  efficient or  desirable way to recover useful energy from the 

system. To achieve the same results for conditions that exist in the system, 

a positive displacement hydraulic motor offers higher efficiencies and better 

control capability over a wide range of loads and speeds. 
the hydraulic-motor-pump-electric motor package approach i s  given in  

Appendix J 

A detailed study on 
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Section 9 
CONCLUSIONS AND RECOMMEND 

9.1 CONCLUSIONS 

The general conclusion drawn from this s tudy  is that the ze ro  gravity 

absorption refrigeration system is feasible for use as a refrigerating system 

in spaceflight vehicles e 

system verified i t s  applicability. 

erator substantiated the conceptual design for those components e 

The conceptual development of the refrigeration 

Prototype tes t s  of the absorber and gen- 

Specific conclusions that can be drawn from the study are :  

1. The detailed fluids investigation revealed that the com- 
bination of R-22 and DME-TEG was the best available 
for existing refrigerant-absorbent combinations for the 
application required . 

2. The various refrigeration system inefficiencies such as 
line friction and momentum pressure losses  and tempera- 
ture  drops between fluids and line walls can be made 
negligible by properly sizing the flow lines. 

3. The ideal generator design temperature to minimize 
radiator a r e a  is 450°F; however, the initial prototype 
design condition was 250° to assure  stability of the 
fluid s 

4. The absorber prototype performed well a t  design condi- 
tions e The tes t  confirmed the analytical prediction that 
turbulence in the absorber tube coupled with the strong 
affinity of the absorbent for the refrigerant produced 
good absorption. 

5. The generator prototype was operated and successfully 
generated vapor. 
conditions, however, because of control problems. 

6.  The recuperator,  1 g separator and cooler operated 
successfully, 

7, The pump-turbine-motor package study requirements 
reveals that the best means of recovering energy from 
the expansion process is to use a positive displacement 
hydraulic motor in the weak solution line. 
recovery system should be used in the refrigerant line. 

It was not operated at exact design 

N o  energy 
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9.2 RECOMMEND 

Based on the successful operation of the several  absorption refrigera- 

tion components, it is recommended that the study be continued. 

recommendations for further work a r e  a s  follows: 

Specific 

1. Conduct a study of the controls required to attain stable 
operation of the total absorber-generator system and make 
these determined revisions. 

2 .  Conduct tes ts  on the total system to obtain performance 
over a range of generator temperatures and over a range 
of absorber inlet refrigeration concentrations. 
tes t  results at several  off-design conditions. 

3. Using the cycle performance computer program, conduct 
additional parametric performance analyses which incor - 
porate the following: 

Obtain 

Alternate system configurations ( ioee9  additional heat 
exchangers ). 

Modified component weight and radiator a r ea  equations 
based on results obtained in other future work tasks. 

A more  refined absorber and generator mass  transfer 
model based on future parametric testing of the two 
components a 

Heat transfer and pressure drop inefficiencies in the 
cycle. 

4. Design, analyze, fabricate and experimentally evaluate 
a zero-g liquid/vapor separator component for the ab- 
sorption ref r ig eration s y s  tern. 

sorber ,  generator and evaporator. Generate f rom these 
studies a detailed flight prototype design for each of the 
four components 

6. Develop a computer capability for modeling the steady 
state and transient performance of the absorber and gen- 
erator e 

computer program and conduct parametric analyses 

7. Conduct systematic investigations to synthesize new re- 
frigerant absorbant combinations which a r e  superior' to 
presently known fluids. Reduce any such fluids to equa- 
tions for use in the cycle computer program and conduct 
computer analyses of the fluids. 

5. Conduct detailed design analyses of the condenser, ab- 

Integrate this into the existing cycle Performance 
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Table 1 

SURVEY OF INORGANIC ND HALOGENATED ORGANIC R E F R I G E R A N T S  

Fluid 

;arbon Dioxide 

immonia 
qitrouo Oxide 

Sulfur Hexafluoride 

Sulfur Dioxide 

Vater 

2 hemi cal Formula 

co2 

NH3 

N2° 

SF6 
so2 

H2° 
C F  C13 

CF2C12 

CF3C1 

CF3Br 

CHFCIZ 

CHF2Cl 

CHF3 

CHZC12 

CH3C1 

CFCIZ  CF2Cl 

CF2Cl e CF2Cl 

CF3 * CF2C1 

CH3 0 CF2Cl 

CH3C C1 F2 

CH3 * CHF2 

CH3 CHF2 

C3F6 

'qF8 
CH3CH2C 1 

HCOOCH3 

CH @1 = CH C1 

CF4 

CH3 * CF3 

Xefrig- 
?ration 
Code 

R 

744 

7 17 

744a 

7146 

7 64 

7 18 

11 

12 

13 

13B 1 

14 
2 

22 
23 

30 

40 

113 

114 

115 

142 

142b 

152 

152a 

2 16 
C318 

160 

611 
1130 

143 

Flammable 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Zxplo sive 

X 

X 

X 

X 

X 

X 

JWL* 
31a s s 
( 5  

X 

X 

X 

X 

X 

X 

X 

LISA** 
Hazard 

> 1  

X 

X 

X 

X 

X 

X 

NOTES: 
Data taken f rom Refs. 1 and 2 * 

** UWL Underwriters'  Lab group classification 

ASA 
11-1 

p =most toxic, 4 = lease toxic 
E = least hazardous, 3 = most hazardous. Aerosol classification (1-3): 
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Table 3 

ABSORBER TEST RESULTS 

Test Run 
12-31-70 

Weak Solution Tank 
0 Liquid temp,, F 

Supply pressure, psi 
Liquid capacity, lb. 

Before Test 
After Test 

Absorber Inlet - Weak Solution 
0 Temperature, F 

Pressure, psi 
Flow rate, lb/min 

Absorber Inlet - R-22 Vapor 
0 Temperature, F 

Pressure, psi 
Flow rate, lb/min 

Weak Solution Sample 
0 Temperature, F 

Refrigerant concenxation 

Absorber Exit - Strong Solution 
0 Temperature F 

Pressure, psi 

Strong Solution Sample 
Temperature , F 
Refrigerant Concentration 

0 

Absorber Coolfng Water 
In le t  temperature, 
Outlet temperature, F 
Flow rate, lb/min 

0 

145 
110 

117.2 
86.2 

142 
110 
8.97 f: .42 

110 
69.2 5 . 2  

05 - + .02 

85 
, 508 

124OF 
686.2 + 2,o - 

85 
0~61 

123 
126 
11 

. .-- 
Test Run 
01-04-7l 

147 
110 

82.9 
66 

143 
210 
8.97 

110 
69.2 

95 

85 
508 

124'F 
68e2 

89 
0.56 

123 
126 
11 

1 1 - 3  
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Table 4 

SCENARIO FOR COMPANION MOTION PICTURE 

Film Ti t le :  Evaluation of AbsoPptton Cycle for Space Station Environmental Control 
System AppficatLon 

e of F i h :  16 mm, black and whi e, s i l en t  Speed: 24 frames/sec 

Absorber Test Apparatus 

E-181 Container, 
E-181 Pressure Tank - Fil l ing Valve, 
Relieve Valve, GHe Line, Pressure 
Gage, Bleed Valve, Dial Thermometer 
and Discharge Valve. 

Weak Solution Mixing Tank - 
E-181 I n l e t  Valve, 
R-22 I n l e t  Valve, 

lut ion Discharge Valv- 

R-22 I n l e t  t o  Mixing Tank, 
Charging Cylinder Valve, 
I n l e t  Valve from LiqGid R-22 Line 

Weak Solution Mixing Tank - 
Liquid R-22 I n l e t  Valve, 
Weak Solution Supply Line t o  Absorber, 
E-181 I n l e t  Valve 

Fdeak Solution Mixing Tank - 
D i a l  Thermometers, 
View Glass Indication Tank Capacity, 

Bleed Valve, GIPe Line 
i r  Motor Coupled t o  S t i r r e r  

ank Pressure Gage 

eak Solutio 
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Table 4 (Continued) 

P -18 

-12 

Subject 

Weak Solution Drain Line, 
Weak Solution Supply Line t o  
Absorber e 

R-22 Vapor Supply - 
R-22 Containers with Heating Tapes, 
Relief Valve and Pressure Regiilators, 
Immersion Heating Baths, 
R-22 Rotameter 

Weak Solution Supply - 
Weak Solution Rotameter 
Weak Solution Sampling Station - 
Bleed and GHe Valves 

Absorber from I n l e t  t o  E x i t ,  
Insulated Absorber Line, 
Bare Return Line t o  Dump Tank. 

sorber Exi t  - 
V i e w  Section with Safety Shield, 
Return Ljtne Sampling Station, 

Sealet Valve, Rotatmeter and 

rattern a% Absorbcr E x i t  
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Table 5 
ABSORBER AND GENERATOR TEST RESULTS 

bbsorber Inlet 

8-22 Vapor : F1 6, 
Temperature, 
Pressure, 

Weak Solution : 

Absorber Exit 

Strong Solution: 

Flow rate, 
Temperature , 
Pressure, 
Mol-concentra- 

t ion  

Temperature, 
Presswee, 
Mol -concentra- 

tion 

5.03 fb/m%n 
110 F 
125 psis 
0.52 

90% 
70 psia 
00 55 

Absorber Coolant: 

Inlet temperature, &OF 
ow rate, 8.78 lb/min 

t temperature, PO0 F 

Recuperator 

Strong Solution: 

Weak Solution: 

Generator 

Inlet Temperature, 120zF 
Exit Temperature, 180 F 

Inlet Temperature, 200zF 
Exit Temperature, 150 F 

Haet pressure, a85 psia 
Inlet Temperature, 1800 F 
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Table 6 

VARIOUS T E M P E R A T U R E S ,  GRAVIMETRIC R E S U L T S  
DETERMINATION OF S P E C I F I C  GRAVITY O F  ANSUL E-181 AT 

Calibration of Pycnometer Bottles (7eF) 

Bottle No. 2 
c 

Bottle No. 1 

Tare, GM 20.4320 19 0478 
H20 GM 45 * 3505 43 * 9595 

N e t  B20 GM 29 9185 24.9117 

Specific Gravity E-181 (AIUSUL), (H20 @ 7 e F )  

Temp. Bottle No. 1 Bottle No. 2 
_c_ 

- 

_LI 2a°F Gross 43 2041 41 e 8305 

N e t  T r n V  
Tare x) 4320 1.9 e 0478 

SpaGe 0.914 0 a 914 -- 
179OF Gross 44 0 3995 42,9690 

Tare a 0 4320 19 I) 0478 

SpeGe 0,962 0.961 
Net 23 0 9 675 23,9212 

_L 

227’F Gross 
Taxi: 

43 e 1223 
20. 3 a  

Net 23 * 2903 
__I SpeGe 0 0 935 0.935 

-- 9.17% Gross 45 e 0746 43 e 7043 
Tare 2-0 e 4 3 a  19 e 0478 

Met 24.6k26 24 e 65 65 
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Fig. 3 - Solubility of Refrigerants 1 1 ,  12, 21 and 22 
in DME-TEG ( t  = 100°F) 
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Fig. 7 - Stability of R-12, R-114 andR-115 with Metals (Ref .  8; 
Sealed Tube, N o  Oil, 2 Years) 
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Fig. 27 - R-22 Condenser & Absorber Temperatures 
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Fig. 32 - Effect of Varying Generator and Absorber Efficiencies 
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Fig. 36 - Absorber Inlet Section (Fig. 9, TP-3151) 

bsorber Exit (Fig. 3 ,  TP-3151) 
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Fig. 39e - Vapor Cooler Above Generator 

bsorber and Transfer Line to Pump 
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Fig. 39g - Pump 

Fig. 39h - Test Loop with Insulations 
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F i g .  41a - Twisted 
Tapes (F ig .  1, 
TP-3178) 

F i g .  41b - Inner and 
Outer Tubes of Re- 
cuperator (F ig .  3, 
TP-3178) 
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Fig.  42 - Liquid Vapor Separator 
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The ordinate is  the power saved by use 
of a direct  cmpled motor-pump-motor 
package expressed as a percent of the 
electr ical  power demand without the 
hydraulic motor. 
of the pressure change across the pump 
that  i s  l o s t  i n  the strong and weak 
solution l ines  and component including 
the absorber but excluding the hydraulic 
motor. 

The abscissa i s  percent 

Fig.  4 3  - Power Saved Versus Hydraulic Losses 
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Appendix A 

R-22 AREA OPTIMIZED CYCLE COMPUTER PROGRAM 
(VERSION 3) 
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Appendix B 

In order t o  determine the flow parameters (Reynolds number and Prandtl 

number, e tc)  in the design of various heat transfer surfaces, as well as 
the transfer l ines ,  it is  necessary t o  have the f lu id  properties l i ke  density, 

specific heat, viscosity, thermal conductivity, etc,  The f luid properties of 

R-22  are readily available, but olily limited data on DMFI-TM: ( A n s u l  polyether 

E-181) are lmown. 

For the immediate need of the present investigation, the specific grav- 

i t y  of the Ansul. Polyether E-181 (DIVE-TEG) was determined between room tem- 

perature and 2a°F i n  an iner t  atmosphere oven by a volume-gravimetric tech- 

nique. 

form peroxides. 

ected temperature and the comparison of the results as  

indicated no trend toward systematic errorso 

The oven was purged with dry nitrogen t o  minimize any tendency t o  

Two paral le l  measurements were made a t  each randomly sel- 

given i n  Table 6 

A fresh supply of E-I81 was placed i n  two  (25 ml) Pyrex pycnometer 

bott les prior t o  each runo The bottles,  when f i l l e d  and weighed a t  the 

laboratory tempera;-ture of 76OF, were each placed i n  an aluminuu cup and 

transferred to the oveno 

excess amount of E-181 out of the capillary i n  the ground glass stopper and 

into the cups, 

specimens were removed and the excess external material spil led on the side 

of the bot t le  was wiped off ,  

a t  various temperatures were plotted i n  Fig. 40, 

Expansion due t o  temperature elevation forced an 

After eqrailibrium temperature i s  reached (1-2 hours), the 

The values of specific gravity of the E-181 

Evaporation of the internally contained E-181 i s  neglected due t o  the 

low vapor pressure and the small exi t  port of the capillary, 

pansion of the Pyrex bott les  i s  also neglected. 

Thermal ex- 

B- 1 

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



The effect  of R-22 and DME-TEG solution on several materials was examined 

by imersion of brasso viton, solder and silver solder. 

a refrigerant concentration of .54 and was maintained a t  150°F and xx) psia 

for 116 hrs. 
sample materials were observed. 

The solution was a t  

No appreciable decomposition of R-22 nor adverse effect  on the 
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The various design concepts for gravity independent absorbers are given 
in Table 7. 
simplicity. 
An overall heat transfer coefficient of xx) BTU/HPF~~-~F is assumed f o r  a 
counterflow concentric-tube type absorber with cooling water flowing in the 
outer jacket to simulate a heat sink as space radiator. The outer tube has 
an 1-inch 0,D. with .049-inch w a l l  and the inner tube of O.5-inch ODD. with 
.020-inch wall. If the average temperature difference between the fluid is 
6,5'F, the length of the absorber is 16 ft. In the present test, a cooling 
length of 23 ft. is used. 

In the present investigation, concept A was chosen for its 
The heat flux in the absorber is (at 1/53rd scale) 45.6 BTU/min, 

The weak solution enters the mixing section through a jet w i t h  four (4) 
copper wires of O.OL3-inch diameter placed criss-cross the opening ofthe 
jet, 
35 psi is provided upstream of the jet to yield a high velocity spray at the 
exit . 

The effective opening is 0.4 x Ft2 and a pressure head of 30 to 

Temperatures, pressures and flow rates of the fluids entering and 

leaving the absorber are measured by standard bimetallic dial thermometers, 
pressure gauges and flow rotameters. 
strong solutions are determined by the failure pressure of the liquid with- 
drawn from the flow line into the samplers. 

The concentrations of the weak and 

c- 1 
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Preparation 

A f t e r  a thorough cleaning of all subassemblies with hot water f o r  the 

removal of s i lver  solder flux and other contaminants, the assembled system 

was purged with dry nitrogen and with helium gas. A f t e r  purging, a vacuum 

check was in i t ia ted  on a l l  assembled components up t o  the regulator valve 

outputs on the helium and R-22 tanks. Following the vacuum integrity check 

a pressure t e s t  t o  the 240 psia level was conducted on a l l  rated components 

in the assembled form. 
f luid,  a zero leak rate  was achieved and maintained throughout the tes t s ,  

Because of the hazardous aspects of the working 

Operations 

Before the t e s t  run, the weak solution i n  the mixing tank was s t i r red  

and heated t o  1450F a t  about 55 psig. 

gas t o  U O  psig just before and during the t e s t  run, 
The tank was pressurized by helium 

In order t o  maintain the R-22 vapor f low rate,  the R-22 containers were 

heated by electr ical  heating tapes wrapped around the lower portion of the 

containers. The test run was ready t o  begin when the vapor pressure i n  the 

R-22 supply manifold reached 300 psi  which i s  just below the sett ing of the 

rel ief  valve on the R-22 containers, 

A t  the beginning of  the test runo the weak solution was introduced t o  

the absorber a t  the scaled-down design flow ra te  of 8.97 lb/min a t  142OF 
with the absorber ex i t  pressure maintained a t  82.9 psia. The R-22 vapor 

was then introduced into the absorber a t  0,503 lb/min 10g°F and 83e9 psi& 

D - 1  
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(It was a t  t h i s  stage tha t  the flow rates  of the weak solution and R-22 

vapor, as  well as  the  absorber ex i t  pressure fluctuate.) 

i n l e t  valve, R-22 vapor i n l e t  valve and the discharge valve t o  the dmp tank 

were adjusted simultaneously t o  obtain the design flow ra tes  and the absorber 

ex i t  pressure. 

The weak solution 

As soon a s  the design f l o w  ra tes  and the absorber ex i t  pressure were ob- 

tained, the view section located a t  the absorber ex i t  showed clear l iquid 

f l o w  in s t ead  of  bubble flow or s t r a t i f i ed  flow which appeared during the flow 
adjustment period, 

capacity of the f luid supply. 

properties were read a t  the completion of the test  run. 

The test run was  terminated immediately due t o  the limited 

The l iquid samples were taken and the f luid 

One additional test  w a s  run under identical  conditions f o r  motion 

picture data. 
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Based on the resul ts  of the computer parametric studies, the recuperator 
has the highest heat f lux  requirement among a l l  the heat transfer components. 

In  order t o  increase the cycle efficiency, the recuperator flow parameters are 

specified as follows (scaled down t o  1/53rd). 

Cold f luid:  9.475 lbm/min of strong solution t o  be heated from 138.5’F t o  242°F 

a t  247.7 psia.  

8.972 lbm/min of weak solution t o  be cooled from 250°F t o  141”~ 
a t  247.7 psia, 

Hot fluid:  

The heat r a t e  as calculated from the values of enthalpy given in  Table 2 is 
398 Btu/min. 

f o r  weak and strong solutions are 

I 
Since Q = rh C &I!, the average values of  the specific heat assumed 

P 

and 
o - 

C = .406 Btu/lb F. m 
*S 

If a counterflow concentric-tube % n e  arrangement i s  used, the logarithmic 

temperature difference is At = 5.37OF. Since Q = US At,, t h i s  yields m 

o US = Q/AW = 74.1 Btu/min F 

The f lu id  capacity r a t e  of the weak and strong solutions are  

- o 
?s = $I C = 3.85 Btu/min F 

FS 

* 
See Appendix K for  nomenclature. 
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Hence, the number of transfer unit is 

'mi, 
This is a very high value due to the high effectiveness assumed for this 
recuperator. The effectiveness is 

The ratio of the f l u i d  capacity rates is 

(5 
- 0.979 W - -  

6s  

From R e f .  29, Table 2-1, it is also seen that e = 0.970 required that NTU = 20. 

In order to determine the size of the recuperator, it is necessary to cal- 
culate the overall heat transfer coefficient. 

If a counterflow concentric-tube type heat exchanger is considered with 
tubes of 1.625-inch O.D., 0.049 inch wall and 1.125 inch O.D. with 0.050-inch 
wall, the flow areas are 0.577 x lom2 ft 
annular and inner tube side. 
transfer area, lower pressure drop but lower heat transfer coefficients, 
are calculated as follows if the weak solution is assumed to f l o w  on the inner 
tube side and the strong solution on the annular side, 
the strong solution is flowing in the inner tube with twisted tapes, 
the sizing of the component is not significantly affected.) 

2 and 0.572 x 10"' ft2, respectively for 
The larger tube diameter provided larger heat 

These 

(In the final design 
However, 

Inner Tube Side - Weak Solution 

PW = 55.66 Lb/Ft3 

= 0,251 Ft/Sec 
vW 

2 
p = 2.2 C,P. = 4,61 x Ibf/sec/ft 

E-2 
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0.U. Btu{hr-ft-”F kW 

This yields the following flaw parameters 

This indicates tha t  the inner tube side flow i s  laminar. Since the tube w a l l  

temperature varies from inlet  t o  exit, the  correlation for  a fully developed 

laminar flow inside a tube with constant heat f lux i s  used t o  yield 

k 
hw = D W e 4.36 = 4.1Btu/hr-ft2-”F 

This i s  too low and requires extremely long tubes. 

I f  0.50 - inch tube is  used a s  i n  the absorber, the Reynolds number is about 

3350 and the heat transfer coefficient of a turbulent flow inside a tube i s  

(Ref .  30) 

2 0  k 
hw = 0.0265 7 W Reoo8 eom3 = 40 Btu/hr-ft - F 

However, t h i s  increase i n  h i s  compromised by the decrease of the tube peri-  

meter and the length of tube for the required heat transfer surface becomes 

even longer. 

W 

Annulus Side - Strong Solution 

3 

= 0,4L ft /sec 

= 56.5 Ib/f t  
PS 

vS 

?i 
= 4.85 x 10-51bf-sec/ft 3 

E-3  
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0 ks = 0,12 Btu/hr-ft- F 

-2 D~ = 4rh = 2*69 x 10 ft. 

This yields the following f low parameter 

Res = 420 

Neglecting natural convection, the f i l m  coefficient f o r  laminar flow i n  annuli 

space i s  estimated f o r  each length of x) ft ( R e f e .  31). 
0 45 

2 0  
= 40.8Btu/hr-ft - F 

In the case where the heat transfer coefficient i s  lower on the annulus 

side, external f i n s  are usually used. 

ant resistance t o  the heat f low i s  on the tube side, the performance of  the 

recuperator may be increased by placing a twisted tape inside the tube. 

the f luid velocity passing the w a l l  of the tube i s  greater for the  same mass 
flow. Secondly, the wall of the tube i s  concave with respect t o  the direction 

of  f luid flow. 

i n  R e f .  32. 
the f lu id  i n  a s w i r l  flow. This has a favorable convection effect  i f  the heat 

f low i s  directed inward a s  cold f lu id  of higher density w i l l  be flung outward 

from the center of the tube. 

I n  the present case, where the domin- 

F i rs t ,  

Both of these yield a larger heat transfer coefficient as  shown 
Finally, a centrifugal force f i e ld  i s  set up by the rotation of 

I n  order t o  design a recuperator for  the present test  loop without exces- 

sive length, the strong solution W i l l  pass through the inner tube with 

twisted tape brazed t o  the wall t o  increase the heat transfer efficiency from 

the  "fin-effects". 

s t r ips  of 0,065 in ,  thick and 48 in. long. 

horizontal position by clamping both ends on bench vises with one end free 
t o  rotate by use of  a ro l l e r  thrust  bearing. 

create some i n i t i a l  stress and then twisted 360 deg per 5*01 - -I- 0.01 in. t o  

cause yield stress i n  the s t r ip ,  These s t r ip s  were then unloaded and annealed 

by heating t o  red heat before being quenched i n  water, 

Twisted tapes were made from l.05-inQ wide s o f t  copper 

The tapes were twisted i n  a 

The tape was first stretched t o  

A f t e r  being pickled 
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i n  n i t r i c  acid t o  remove scales and then polished with a motor-driven wire 

brush, the bft, tapes were soldered together t o  form s ix  =-feet long con- 

tinuous tapes of 1.020 - + OeO03-in. wide. 

1.125-in. O.D. (0,050 - in. wall) copper inner tubes of the recuperator. 

Soft O.125-in. O.D. copper tubings were wound around the outside of these 

inner tubes a t  360 deg per 6-in. 

O.D. (0.049-9n. wall) s ta inless  steel outer tubing t o  form the main body 

of  the recuperator. 

These w e r e  placed inside the 

These w e r e  then placed inside the 1.625-in. 

Fig, 41a shows the twisted tapes and Fig. 41b shows the inner and outer 

tubes 
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The various design concepts fo r  gravity independent generators are  given 

i n  Table 8 and the methods of heat addition t o  the generator i n  Table 9. In 
the present investigation, simple s t ra ight  tubes with e lec t r ica l  heating a re  

used e 

The generator temperature i s  limited t o  250°F t o  assume the safety of the 

operation. 

or 0.99 KW. 

The l iquid properties a t  the inlet  of the generator are* 

The heat input required (scaled down t o  1-53d) i s  55.9 Stu/min 

Stainless steel tubes of 1-inch O.D. and 0.049-inch w a l l  are used. 

= 48.7 l b / f t  3 
PL 
VL = 0.718 ft /sec 

% = 1.7 COP, = 3.6xlOS5 lbf-sec/ft 2 

% = 0.15 Btu/hr-ft-”F 

Based on above, the average heat t ransfer  

is  (Ref .  30) 
ho = -0243 k Re 0.8 

coefficint  of l iquid on the hot wall 

Proe4 = 36 B%u/hr-ft2-”F 

Based on t h i s  value of heat t ransfer  coefficient of single-phase flow, the 

relationship proposed i n  R e f ,  33 can be used t o  calculate the heat t ransfer  

coefficient i n  two-phase f l o w  

* 
See Appendix 

h - =  
ho 

K for nomenclature 
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where 

= boiling number = q/rG 
BO 

r = latent heat of vaporization 

G = mass velocity of f lu id  

x = Lockhart & Martinelli parameter tt 

x = weight fraction of vapor in liquid 

2 0  This yields h = 80 Btu/hr-ft - F. The generator tubes are heated by Cole- 

Pamer heating tapes with maximum total input wattage of 3.73 kW (212 Btulmin. ) . 
To improve the performance, twisted tapes may be inserted into the tube and an 
average overall heat transfer coefficient of 200 Btu/hr-ft - F can be assumed 
(Ref. 34). 
between the hot wall and the bulk of the f l o w ,  the heating length required will 

2 0  

If a logarithmic mean temperature difference of 10°F is assumed 

be 

= 8 ft. 55.9 x 60 x 12 L =  
X)O x IT x .902 x 10 

For the present test, two lengths of 10-ft. tubes as shown in the back- 
ground of Figure 41b were used for the generator without twisted tapes. 

F-2 
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SEPARATOR DESIGN 

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



Appendix G 

Various design concepts for gravity independent liquid-vapor separators 

are given i n  Table 10, 

i t y  type based on the design i n  Figure 42 was fabricated, 

For the present investigation, a simple vortex-grav- 

G-1 
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COOLER DESIGN 

LWKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



Appendix H 

The R-22 vapor from the separator w i l l  be cooled from 250’3’ t o  145OF a t  
247.7 psia (see Table 2 and Fig. 20). The amount of heat t o  be rejected t o  the 

cooling water i s  9.79 Btu/min. 
cooler w i l l  be used with R-22 vapor flowing inside a 0.5-inch copper tubing 

of 0.035-inch wall and water flowing inside the annuli formed with a 1.0-inch 
stainless steel tubing o f  0.049-inch w a l l .  
inner tube side are* 

For the  present test ,  a concentric tube type 

The mean f lu id  properties on the 

Pg = 3.5 lb / f t3  

V = 2.4 ft /sec 

p = .015k c.p. = 3.22 x lbf/sec/ft 2 

- 
C = 0,21 Btu/lb-”F 
P 
k = .0083 Btu/hr-ft-’F 

These yield the flow parameters of 

ps = 2,26 
4 Re = 2,91 x 10 

The heat transfer coefficient on the inner tube side i s  (Ref  .30) 

h = 0.0243 k, Reoe8 Proa4 = BOBtu/hr-ft 2 0  - F 
D 

On the annulus side, the average water properties are 

* 
See Appendix 

PW 

v 
W 

K for nomenclature 

= 61.6 lb / f t3  

= 0 . a 4  ft /sec 
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= 0.334ft e 
flaw area 

wetted parameter 4 , = 4  

4 These yield the Reynolds number of 1.6 x 10 e 

f ic ient  of turbulent water flow on the shel l  side i s  ( R e f .  31). 
The mean heat transfer coef- 

= 0.023 C G Pr- 213 cp 
hW P 

where 

These yield a hw of 179 Btu/hr-ft2-?p. 

For .03!5-inch copper wall and k 3r xx> BtU/hr-ft-OF, the mean overall heat 

transfer coefficient i s  estimated t o  be 

2 9  U = 110 Btu/hr-ft - F 

The mean logarithmic temperature difference i s  B0F. The length of tube is  
therefore 

For the present test ,  two lengths of four feet tubes as shown a t  the foreground 
in Figure h b  were used. 

H- 2 
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Appendix I 

A. 

1. 

2. 

3. 

4. 

B e  

1, 

2. 

3. 

4, 

5 .  

6. 

Preparation 

The system was cleaned with alcohol and hot water. 

was tested t o  300 psig and the vapor l ines  t o  250 psig. 

The system was purged with helium gas and then evacuated f o r  vacuum t e s t ,  

After the vacuum and pressure t e s t ,  the system was maintained a t  83.9 psia 

w i t h  helium gas except the R-22 vapor l ines  (between the closed valves _s v10 
and V U )  which remained evacuated. 

The weak solution mixing tank was f i l l e d  with solution with a concentration 

of R-22 between tha t  of the weak and strong solution. 

The l iquid circui t  

- 

Fill ing of the System wlth Solution 

Introduce solution into the system and the bleed valve on top of the sep- 

arator i s  opened gradually t o  release the helium gas from the system. 

Observe the l iquid level r ising i n  the separator. 

the bleed valve, close the bleed valve and the solution feed valve. 

Star t  the pump and close the pump by-pass valve gradually t o  maintain the 

reading on the generator i n l e t  pressure gauge a t  248 psia and the absorber 

exi t  pressure gauge a t  83.9 psia. 

Adjust the absorber weak solution pressure and flow rate  by the thro t t le  

valve a t  the recuperator ex i t  and the in l e t  valve t o  the absorber. 

Increase the generator l iquid exi t  temperature t o  250°F by adjusting the 
electr ical  power input t o  the heating tapes. 

Maintain the absorber l iquid exi t  temperature a t  about 138OF or lower by 

adjusting the cooling water flow ra te  w i t h  valve v12, q_ 

When liquid appeared a t  

1-1 
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C. 

1. 

2. 

3. 

4. 

D. 

1. 

2. 

3. 

E. 

1. 

2. 

3. 

4. 

Addition of R-22  Vapor 

A s  the l iquid level  i n  the separator i s  lowered t o  midpoint, open the 

vapor valve t o  the cooler and the vapor in l e t  valve t o  the absorber. 

Adjust both valves and the coolant f low t o  maintain the R-22 vapor a t  

the absorber inlet as close t o  the design condition ps possible. 

If the flow rate i s  too high, discharge some vapor through the bleed 

valve on top of separator. 

through the vapor charging valve. 

Adjust pump bypass valve t o  maintain 83.9 psig a t  pump inlet and 248 psia 

a t  the generator inlet. 

If the flow rate i s  too low, admit R-22 vapor 

Operation 

Adjust absorber coolant water flow ra t e  t o  maintain strong solution exit 
temperature a t  138.5OF. 
ent . 
Maintain proper flow ra te  a t  absorber by adding or discharging weak 

solution or R-22 from the system. 

Terminate the t e s t  when steady s t a t e  conditions can be maintained for 
t w o  t o  four hours. 

Record the f luid f low conditions a t  each csmpon- 

Shut-down of Tes t  System 

Turn off generator heating input and lower the coolant temperature t o  

the absorber and vapor cooler. 

A s  the flow temperature and pressure decrease, open the pump bypass valve 

gradually t o  reduce the pressure difference across the pump. 

Shut off the pump when the generator exit  temperature i s  below la°F and 

the pressure difference across the pump is  below x) ps i ,  

The system is  now ready fo r  additional tes t  m s o  
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PUMP-TURBINE-MOTOR PACKAGE STUDY 

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER 



Appendix J 

There are  two basic types of hydraulic turbines. One type, for ex- 

ample, the Pelton wheel, converts the ent i re  head into velocity so that 

the f lu id  i s  a t  discharge pressure prior t o  entering the runners of the 

turbine. 

f u l l  of flula so tha t  i t s  application t o  the refrigeration system is not 

possible 

In t h i s  ty-pe of turbine the runner (wheel) i s  on ly  part ia l ly  

The other type, of which the Francis and Kaplan turbines are examples, 

converts part of  the head into velocity within the runner. 

be kept completely f u l l  of f lu id  a t  a l l  times. 

f luid flow i n  the weak solution l ine,  the runner would be less  than 2.5 

inches in  diameter and would rotate a t  speeds in excess of 10,000 rpm. 

For the' refrigerant l ine,  the speeds would be about three times greater. 

Such small size and high speeds result  i n  lower efficiences, cavitation as 

well as  needs fo r  reduction gear t r a in  and flow controls. 

bine is  not the most efficient or desirable way t o  regain energy from the 

system, 

The runner must 

For the available head and 

In short ,  the tur- , 

The positive displacement hydraulic motor is much better suited f o r  

energy recovery for the flow and head available i n  the refrigeration system. 

Well designed units have an efficiency of 83 t o  90% depending on type and un- 
l ike  a turbine, t h i s  efficiency varies only  sl ight ly  over a rather large 

range of speeds and loads, 

independently by varying the load on the motor. 

a t  zero speed, the flow i s  zero except f o r  leakage ( f l o w  efficiency i s  related 

t o  leakage) for hydraulic motors whereas the f l o w  through a turbine i s  almost 

the same a t  zero rotation as a t  operating speeds. 

Furthermore, f l o w  or pressure can be controlled 

This i s  due t o  the fact  tha t  

J- 1 
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In the present test system, the mass flow through the refrigerant line is 
only 5.3$ of the total flow whereas 94.7$ of the mass flows through the we& 
solution line. 
hydraulic motor should replace the throttle valve in the weak solution line 
between the recuperator and the absorber whereas the throttle valve in the 
refrigerant line between the subcooler and the evaporator should remain. 
the motor is mechanically coupled directly to the pump, the total mass flow 
in the system will depend on pump speed and density of the strong solution as 
it passes through the pumpe 

To achieve maximum energy recovery, it is obvious that the 

If 

!Phe use of a fixed displacement hydraulic motor located in the weak solu- 
tion line and coupled directly to the pump assumes that an absorption 
refrigeration system can operate effectively by close control of the pressure 
drop between the condenser and the evaporator by use of a throttle valve in 
the refrigerant line. 
then vary not only with pump speed, but with temperature variations at the 
motor and pump. 

The volume flow through the refrigerant line would 

If this situation is not compatible to the refrigeration system, a 
variable displacement piston motor can be used. 
can be controlled independently of speed. 
a piston motor are an increase in weight by possibly three to four times an6 

a more complicated mechanism both in the control mechanism and motor. Another 
option is to place a small by-pass line with controlled throttle valve around 
the motor. 
proportional to mass flow through the by pass, 

In this manner, mass flow 
??le penalties imposed by use of 

This would impose a penalty of loss of energy recovery directly 

On the other hand, if the hydraulic motor is used to drive an electric 
generator instead of the pmp, greater flexibility of control is achievede 
Better control is achieved because either the flow or pressure drop can be 
controlled independently of any other element of the system, For instance, if 
a motor-generator set is placed in both refrigerant line and the weak solution 
line, either can be chosen t o  control the pressure drop across the condensor 
and evaporator whereas the other can be used to control mass flow. If it is 
desirous to control the mass flow through the refrigerant line, then the 
rotational speed can be monitored and the field coils of the generator can be 

J- 2 
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controlled t o  load the motor a s  necessary t o  maintain the desired speed, 

If t h i s  mass flow must be some ra t io  of the mass flow through the pump, then 
the speed of  the pump can be monitored and the resultant signal can be used 

t o  control the speed of  the motor, 
used t o  control pressure i n  the system simply by controlling the f i e l d  coi ls  

in  relation t o  the measured pressure differences. 

The other motor generator set i s  then 

In considering angular momentum it can be stated tha t  the e lec t r ic  motor- 

pump unit  plus the f lu id  i n  the system can induce angular momentum changes i n  

the space station during changes i n  operating conditions. 

it is  possible t o  minimize or eliminate these effects. 

generator uni ts  provide f l ex ib i l i t y  i n  t h i s  regard as the angular momentum im-  
parted t o  the space station by these units cas be used t o  counterbalance the 

angular momentum created i n  the other par ts  of the system. 

By judicious design, 

The hydraulic motor 

The use of generators requires controls and conditioning of the energy so 

t h a t  it can be stored i n  the storage bat ter ies  of the station. It i s  estimated 

that  the stored energy w i l l  be about 6576 of the energy saved by the direct 

coupled method. 

Weight increase as  a resul t  of motor-generator sets has not been investi- 

gated, but a few fac ts  are  worthy of comment, F i r s t ,  the s i z e  and weight of 

an electr ic  generator of a given output depends upon rotational speed of the 

armature. The higher the speed, the smaller the size. 

I n  addition, DC and AC generators must both be considered in  order t o  as- 
certain the advantages of each f o r  the application. 

used, then the weight of a r ec t i f i e r  must be added, 

size,  type and control methods must be investigated i n  order t o  arrive a t  the 

proper course of action. 

I f  an AC generator i s  
The ent i re  question of 

J- 3 
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The question then becomes one of development of a hydraulic motor-pump- 

electr ic  motor package, 

f o r  development and use i n  the weak solution l ine  between the recuperator and 

absorber i f  two conditions are met. 

losses i n  the other components of  the system are below a predetermined amount 

and 2) the control system necessary f o r  the successful use of th i s  package is  
ampatible with the operation of the refrigeration system. 

It i s  recommended that t h i s  package be considered 

These conditions are 1) the hydraulic 

The rationale for these conditions are: 

1. The hydraulic motor w i l l  reduce the electr ical  power demanded by the pump 

by about 68% i f  there are no hydraulic l i ne  losses or losses in  the absorber. 

Figure 43 shows the relation between percent power recovered in terms of  the 

electr ical  power required a t  the pump and the sum of losses of a l l  other com- 

ponents 

cent power savings w i l l  determine the maximum permissible pressure losses. 
the losses are less  than th i s  amount then the development of the package is  

justified. 

in  the strong and weak solution lines. The minimum acceptable per- 

If 

2. 

difference i n  the system, but w i l l  only meter the f l o w .  
ence between the condenser and evaporator can be controlled by the thro t t le  

valve in  the refrigerant l ine.  

the thro t t le  valve whereas flow is  metered by the motor. 

system can operate successfully with t h i s  control method, then the package 

should be considered. 

The use of the motor will, of i t s e l f ,  not create the required pressure 

The pressure differ-  

Thus, pressure i n  the system i s  controlled by 

If the refrigeration 
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Appendix K 

Symbol 

B, 
0 

- 
C 

P 
D 

dh 
G 

h 

k 

L 

m 

N T U  

Pr 

Q 

R e  

r 

S 

u 
V 

X 

tt X 

boiling number 

fluid capacity ra te  

specific heat 

diam et e r 

h yd r aulic diameter 

mass velocity of fluid 

film coefficient 

thermal conductivity 

length 

mass flow ra te  

number of transfer units 

Prandtl number 

heat ra te  

Reynolds number 

latent heat of vaporization 

area 

overall heat transfer coefficient 

velocity 

weight fraction of vapor in liquid 

Lockhart & Martinelli parameter 

K-  9. 
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Greek 

At 

E 

P 

P 

Y 

Subscripts 

g 

i 

m 

min 

0 

S 

W 

temperature difference 

effectiveness 

viscosity 

density 

parameter defined on page H - 2  

gas 

inside 

liquid 

log mean value 

minimum 

outside or  hot wall 

strong 

weak or water 

K - 2  
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